Press Coverage

Collaborating with Confidence

Issue link: https://geospatial.trimble.com/en/resources/i/1415420

Contents of this Issue

Navigation

Page 45 of 64

46 csengineermag.com august 2019 to ensure trains travel with as little harmonic rocking as possible to prevent the train from derailing. All these systems must be in place to ensure the safety of a train and its operators. The finalized scope of work consisted of replacing damaged crossties, adding ballast to return the railroad to grade, cleaning out drainage ditches of debris, repairing culverts, re-surface and aligning tracks, and testing any electrical grade crossing signals. The USACE awarded a contract to Eagle Eye Electric, LLC with Civil Works Contracting (CWC) as their subcontractor. Construction started on October 2, 2018, and by November 26, 2018, the installation was back to FOC. The contractors worked seven days a week in order to reach FOC within this period. This massive effort used specialized equipment and operators brought in from all regions of the country. A total of 7,891,760 lbs. (390 tons) of crossties were disposed of at a local energy plant and recycled for energy. In addition, workers replaced more than 4,190 cross ties using approximately 36,000 rail spikes amounting to nine tons of spikes. Furthermore, 150 linear feet (LF) of 36-inch to 60-inch concrete culvert pipe was replaced from under and alongside of the tracks. The repairs of the washouts required 2,245 cubic yards of structural fill, 521 tons of aggregate base, and 1,753 tons of ballast. To finish off, a total of 60,000 LF or 11.36 miles of track was re-surfaced and aligned to level the track over the repairs. Focus on the Future: An asset management plan for railways includes the maintenance of the rails, ties, plates, spikes, anchors, ballast, drainage structures, maintenance equipment, and personnel. The road to railway resiliency starts with a strategic asset management plan that seeks to optimize each asset's life cycle. The first step of this process is to establish asset condition indexes, identify the manufacturer's recommended lifecycle for each asset, and develop a comprehensive maintenance plan. The framework used the railway condition index to prioritize, plan and budget repairs and capital improvements. This labor intensive process enabled USACE to expedite work following Hurricane Florence by utilizing UAVs and an influx of SMEs. During normal operation, however, MOTSU has two track inspectors who average 30 days to complete the task of walking all tracks in order to deem them in or out of service. MOTSU's tracks are required to have a monthly "walking inspection." The maintenance team must develop a comprehensive maintenance plan which clearly communicates maintenance priorities in terms of risk, levels of severity and likelihood of impacting operations. A comprehensive maintenance plan projects reoccurring repairs into the future, at least five and ten years out, in order to visualize efforts and distribute costs. Together, a multiyear maintenance plan and a well- defined prioritization matrix communicates urgency during the funding process. Another consideration when developing the budget and maintenance plan is whether to routinely maintain an asset or run it to failure. This helps to identify funding needs as expense or capital improvement. In addition, a substantial financial and time investment is equipment, training, and establishing redundancy in the system. When it's not fea- sible to conduct repairs due to time or budgetary constraints, it may be more feasible to out-source the work. To illustrate the magnitude of specialized equipment necessary for rail- way maintenance, MOTSU's inventory of equipment consists of rail motor cars (to haul personnel and materials), spike extractors/inserters, tie extractors/inserters, a tie crane (to clean up loose ties and lift switch ties), an aerial lifter (to insert plates), high rail dump trucks (ballast), tampers (to surface and align rail, and tamp ballast), regulators (to dress up the ballast on railroad shoulders and sweep excess ballast from the tracks), brush cutters (vegetative maintenance), loaders and fork lifts. MOTSU faces a challenge to balance the budget and schedule in order to maintain equipment, cross-train personnel, and conduct repairs. Putting the components of strategic asset management in perspective, MOTSU's railway maintenance supervisor shared his vision for the future of MOTSU's railway maintenance plan. His strategy focuses on six primary components: inspections, crossties, switches, ballast, ditches and culverts, and OTM – other track materials. Track is replaced over 60-inch culvert. Photo: Meg Vermillion

Articles in this issue

Links on this page

view archives of Press Coverage - Collaborating with Confidence